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A dynamic sti!ness matrix for a non-prismatic rod "nite element resting on a
two-parameter non-homogenous elastic foundation has been determined. To obtain the
solution the shape function was approximated by Chebyshev series. This yielded closed
analytical formulae for the coe$cients of the matrices sought. The "nite element obtained
was used to solve the dynamic stability problem for a non-prismatic cantilever column. The
results were compared with those reported by other authors.
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1. INTRODUCTION

The use of variable-cross-section rod systems in modern engineering structures has been
increasing due to the necessity for the rational and economical design of structures and for
architectural reasons. Solutions of many static problems, including stability problems, can
be found in a monograph by Krynicki and Mazurkiewicz [1]. An analytical solution,
consisting of the expansion of the displacement function into a Fourier series and the
application of variational methods, was presented by Heidebrecht [2]. Fourier series,
supplemented with power polynomials, were applied to solve linear, variable-coe$cient
di!erential equations (derived from, e.g., variable-cross-section beam vibration problems) in
a paper by Ganga Rao and Spyrakos [3]. A rigidity and mass matrix for a beam with
linearly variable height was determined by Gupta [4]. Non-prismatic beams were also
studied by Eisenberger who in reference [5] determined sti!ness matrix elements for several
kinds of non-prismatic beams. Jointly with Reich [6], Eisenberger applied the "nite element
method to a static and dynamic analysis to solve the stability problem, approximating the
beam's displacements by polynomials of degree 3. In reference [7], he presented formulae
for sti!ness matrix elements for a beam element with variable rigidities described by power
series. Klasztorny [8] applied the same polynomial approximation to determine a sti!ness
and mass matrix for Euler and Timoshenko beam "nite elements with variable parameters.
Ruta [9] applied Chebyshev series to solve the vibration problem for a non-prismatic beam
resting on a non-homogenous two-parameter elastic foundation. A solution in the form of
a series relative to Chebyshev polynomials was obtained by solving an in"nite system of
algebraic equations for harmonic vibration. In the case of aperiodic vibration, an in"nite
system of ordinary di!erential equations had to be solved. The equations' coe$cients were
de"ned by closed analytic formulae.

Among works on stability, it is worth noting those dealing with systems under
non-potential loads. Using Bessel functions Elishako! and Pellegrni [10] solved the
problem of a simply supported rod loaded with a tangential, distributed follower load.
0022-460X/02/080445#20 $35.00/0 � 2002 Academic Press



446 P. RUTA
Massey and Van der Meen [11] studied the stability of a non-prismatic cantilever under an
applied follower force. Sankaren and Venkateswara Rao [12] determined the critical
follower load values for taper columns with rigidly and elastically "xed ends. Glabisz [13]
extended the Eisenberger formulae [7] for sti!ness and mass matrices for rods with variable
rigidity and density to rods resting on a two-parameter foundation and subjected to
non-potential loads. He applied his method to solve several stability problems relating to
non-prismatic cantilever rods subjected to distributed and concentrated non-potential
loads. Similar to references [7, 8], power series were used to approximate displacement
functions in reference [13].

In this paper, a non-prismatic "nite rod element with variable strength and geometric
parameters, resting on a two-parameter non-homogenous elastic foundation, is analyzed
following the procedure in [14]. It is assumed that the rod's variable parameters, such as
#exural rigidity, axial rigidity and density, the foundation's variable parameters and the
load can be represented by an expansion into a series relative to Chebyshev polynomials of
the "rst kind. Using the theorems and relationships for the above polynomials found in
reference [15] and the results presented in reference [9], shape functions are determined and
on their basis a dynamic rigidity matrix is derived for the analyzed element. This method is
applied for one "nite element to solve the stability problem for a non-prismatic cantilever
rod and a clamped}simply supported rod, loaded with a concentrated or distributed
follower load. The examples considered were taken from Glabisz&&s paper [13]. The above
element was also used to analyze a frame system subjected to axial potential loads. The
obtained numerical results are compared with those reported in papers [1, 13, 17, 18].

2. PROBLEM FORMULATION

A non-prismatic, rectilinear Euler rod with a length of 2a, resting on a two-parameter
elastic foundation, subjected to normal P (X, t) and tangential R(X, t) loads (Figure 1)
is considered. In addition, non-potential distributed load s(X) and at the rod's ends,
concentrated non-potential forces P

�
, P

�
act axially on the rod.

In the case considered, the rod's transverse and longitudinal vibrations are described by
the following partial di!erential equations:

��
�X� �EJ(X)

��=
�X��!

�
�X �N(X)

�=
�X�!

�
�X �C(X)

�=
�X�#K(X)=(X)#�(x)

��=

�t�

"P (X, t)#s(X) �(X)
�=
�X

, (1)

!

�
�X �EA(X)

�;
�X�# F(X);(X) # � (X)

��;
� t�

" R (X, t), (2)

where= and; denote displacement, respectively, perpendicular and tangent to the rod's
axis, E is Young's modulus, A and J are the rod's "eld and moment of inertia, � is mass per
unit of length and F(X), K (X), C(X) are functions characterizing the elastic foundation's
reactions. A geometric interpretation of function coe$cient � (X), called a &&follower
coe$cient'', is shown in Figure 2. If �"0, load s (X) becomes a classic potential load with
a spatially "xed direction and a materially prescribed point of application, whereas when
�"1, s(X) is a strictly follower load.
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Figure 1. Diagram of non-prismatic rod.
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Figure 2. Geometric interpretation of follower coe$cient �.
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Cross-sectional forces: bending moments, the shearing forces and axial forces are de"ned
as follows:

M(X, t)"!EJ
��=
�X�

,

¹(X, t)"!

�
�X �EJ

��=
�X��#N

�=
�X

,

Q(X, t)"EA
�;
�X

. (3)

If discussions are limited to harmonic vibration and using relations

x"X/a , =(X, t)"= (X) e���"aw (x) e��� , ; (X, t)"; (X) e���"a u (x) e��� ,

P(X, t)"P(X) e���"
P
�
a
p(x) e��� , R(X, t)"R(X) e���"

P
�
a
r(x) e���

(4)
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and

s(X)�(X)"
P

�
a
s� (x)�N (x)"

P
�
a
S(x) (5)

equations (1) and (2), give

EJ(x)
��w

�x�
#�2

�EJ(x)
�x �

��w

�x�
#�

��EJ (x)

�x�
!n (N(x)#C(x))�

��w

�x�
(6)

!n�
�N(x)

�x
#

�C (x)

�x
#S (x)�

�w
�x

#nK(x)w!��g�N (x)w"np (x),

!d�EA(x)
��u

�x�
#

�EA (x)

�x
�u
�x�#nF (x)u!��g�N (x)u"n r(x), (7)

and cross-sectional forces (3) are expressed by the formulae

m(x)"
M(ax)a

EJ
�

"!EJ
��w

�x�
,

t(x)"
¹ (ax)a�

EJ
�

"!�
�
�x
EJ�

��w

�x�
!EJ

��w

�x�
#nN

�w
�x

, (8)

q (x)"
Q(ax)

EA
�

"EA
�u
�x

,

where

EJ"EJ
�
EJ, N"P

�
N , C"P

�
C , K"

P
�
a�
K, �"�

�
�N ,

EA"EA
�
EA, F"

P
�
a�
F, n"

a�P
�

EJ
�

, g"

a��
�

EJ
�

, d"
a�EA

�
EJ

�

, (9)

and EJ
�
, EA

�
, �

�
, P

�
are reference values.

To simplify the notation, assume EJ, EA, N, S, C, K, �, F for EJ, EA, N, S, C, K, �N , F.

3. SOLUTION OF THE PROBLEM

Solutions of the di!erential equations (6) and (7) are sought, having the form of
a Chebyshev series of the "rst kind

w (x)"
�
�
���

� a
�
[w] ¹

�
(x)"

�
�

���

� w
�
¹

�
(x), (10)

u(x)"
�
�
���

� a
�
[u] ¹

�
(x)"

�
�
���

� u
�
¹

�
(x) , (11)

where

�
� �
���

a
�
[ f ]"	

�
a
�
[ f ]#a

	
[ f ]#a

�
[ f ]# ) ) ) , (12)
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and a
�
[w], a

�
[u] are unknown coe$cients of the expansion of the displacement functions

w and u into a Chebyshev series, denoted further on in the paper as w
�
and u

�
, respectively.

To solve equations (6) and (7) the following theorem on ordinary di!erential equations
[15] will be applied:

Theorem. If a function f satis,es a di+erential linear equation of order n'0

�
�

���

PK
�
(x) f 
� � ��(x)"PK (x) , (13)

and

Q
�
(x)"

�
�

���

(!1)
���

�
n! j

m! j�PK 
�� ��
�

(x), m"0, 1, . . . , n , (14)

and the Chebyshev series coe.cients in functions (Q
�
f )
�� , (Q

	
f )
��	� , . . . , Q

�
f, PK are

determined, then for each integer k the following identity is true:

�
�

���

2���
�
�

���

b
���

(k) a
������

[Q
�
(x) f (x)]"

�
�
���

b
���

(k) a
������

[PK (x)], (15)

where b
���

(k) are polynomials of integer variable k.

b
���

(k)"(!1)��
m

j � (k!n)
�����

(k!m# 2j) (k# j# 1)
���

(k�!n�)�	 ,

m"0, 1, . . . , n ; j"0, 1, . . . , m . (16)

(c)
�
"�

1 for k"0,

c(c#1)(c#2) . . . . (c#k!1) for k"1, 2,
(17)

and a
�
[h] is the kth coe.cient of the expansion of the function h(x) into a Chebyshev series

relative to Chebyshev polynomials of the ,rst kind (a proof of this theorem can be found in
reference [15], pp. 231}234).

Functions PK
�
, PK in equations (6) and (7) for displacements w and u are given by the

formulae

PK
�
(x)"EJ(x), PK

	
(x)"2

�EJ(x)
�x

, P)
�
(x)"

��EJ(x)

�x�
!n (N(x)#C(x)),

P
�
(x)"!n �

�N(x)

�x
#

�C(x)
�x

#S(x)� , P) �(x)"n K(x)!��g � (x), P) (x)"np (x)

(18)

and

PK
�
(x)"!d EA (x), PK

	
(x)"!d

�EA(x)

�x
,

P)
�
(x)"nF(x)!��g � (x), P) (x)"nr(x). (19)
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After relation (14) is applied, functions Q
�

associated with PK
�

assume, for w and u,
respectively, the following form:

Q
�
(x)"EJ(x) ,

Q
	
(x)"!2

�EJ(x)
�x

,

Q
�
(x)"

��EJ(x)
�x�

!n(N(x)#C(x)) ,

Q
�
(x)"n�

�N(x)

�x
#

�C(x)
�x

#S(x)� ,
Q

�
(x)"n�K(x)!

�S(x)
�x �!��g �(x),

(20)

and

Q
�
(x)"!d EA (x),

Q
	
(x)"d

�EA(x)

�x
,

Q
�
(x)"n F (x)!��g � (x) .

(21)

Using the above theorem, formulae (20) and (21) and the following relations (see reference
[15], p. 128, equation (33), p. 124, equation (17)):

a
�
[ f (x) ) g(x)]"

1

2

�
� �
���

a
�
[ f ] (a

���
[g]#a

���
[g]), (22)

a
�
"

1

2l
(a�

��	
! a�

��	
) , lO0, (23)

where a
�
"a

�
[ f ] and a�

�
"a

�
[ f � ], after transformations in"nite systems of algebraic

equations are obtained which allow one to determine coe$cients w
�
of the expansion of

displacement function w

�
� �
���

�8(k�!9)(k�!4) l [(k#1)(l!1) e
���

!2
��	
�

��	

(k!l#2j) e
�� ����
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�� �
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�����
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� � � � �
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�� ���

!c
�����

)!2(k�!4) (c
�� �

!c
���

)
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�� ���
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�����
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�
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�� ���
#k

�����
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�� ���
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)
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�� �
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���

) !4(k!3)(k�!4) (k
�� ���
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�����
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�� ���
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!nl [(k#1) (k#2) (k#3) (s
�� ���

!s
�����

)!3(k#2)(k�!9) (s
�� ��	

!s
����	

)
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�� ��	

!s
����	

)!(k!1) (k!2) (k!3) (s
�� ���

!s
�����

)]

!	
�
��g[(k#1) (k#2) (k#3) (g

�����
#g

�����
)!4(k#3) (k�!4) (g

�����
#g

�����
)

#6k(k�!9) (g
���

#g
���

)!4(k!3) (k�!4) (g
�����
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�����

)#(k!1) (k!2)

�(k!3)(g
�� ���

#g
�����

)� w
�

"n�(k#1) (k#2) (k#3)p
���

!4(k#3) (k�!4)p
���

#6k (k�!9)p
�

!4(k!3) (k�!4)p
���

#(k!1) (k!2) (k!3)p
���

� , k"0, 1, 2, 3, . . . (24)

and coe$cients u
�
of the expansion of displacement function u

�
� �
���

�!2d (k�!1) l (d
���

#d
���

)

#	
�
n[(k#1) ( f

�����
#f

�����
)!2k( f

���
#f

���
)#(k!1) ( f

�����
#f

�����
)]

!	
�
��g[(k#1) (g

�����
#g

�����
)!2k(g

���
#g

���
)#(k!1) (g

�����
#g

�����
)]�u

�

"(k#1) r
���

!2k r
�
#(k!1) r

���
, k"0, 1, 2, 3, . . . . (25)

Parameters e
�
, n

�
, c

�
, k

�
, s

�
, g

�
, p

�
and d

�
, f

�
, r

�
in formulae (24) and (25) are coe$cients of the

expansions of the following functions which occur in equations (6) and (7):

EJ(x)"
�
� �
���

e
�
¹

�
(x), N(x)"

�
� �
���

n
�
¹

�
(x),

C(x)"
�
� �
���

c
�
¹

�
(x), K(x)"

�
� �
���

k
�
¹

�
(x),

S (x)"
�
� �
���

s
�
¹

�
(x), � (x)"

�
� �
���

g
�
¹

�
(x),

p(x)"
�
� �
���

p
�
¹

�
(x),

(26)

EA(x)"
�
� �
���

d
�
¹

�
(x), F(x)"

�
� �
���

f
�
¹

�
(x), r(x)"

�
� �
���

r
�
¹

�
(x). (27)

The full derivation of equations (24) and (25) can be found in reference [9], but the
equivalents of formulae (24) and (25) there contain editorial errors and the part of formula
(24) relating to function C(x) was derived incorrectly.

To calculate the displacements, angles of rotation and internal forces (see formula (8)) at
the rod's ends, Chebyshev expansions of the functions EJ(x),N(x), EA(x) (formulae (26) and
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(27)) and the following relations ([15] p. 48, equations (14), (16)) will be used:

¹
�
(1)"1, ¹

�
(!1)"(!1)�,

¹�
�
(1)"n�, ¹�

�
(!1)"!(!1)�n�,

¹	
�

(1)"n�(n�!1)/3, ¹	
�
(!1)"(!1)�n�(n�!1)/3,

¹�	
�

(1)"n�(n�!1) (n�!4)/15, ¹�	
�
(!1)"!(!1)�n�(n�!1) (n�!4)/15.

(28)

After putting the values of polynomials ¹
�
(x) and their derivatives at points $1 into the

formulae for the expansion of function EJ, N, EA, �EJ/�x, the following is obtained:

EJ(#1)"EJ
�

"

�
� �
���

e
�
¹

�
(1)"

�
� �
���

e
�
,

EJ(!1)"EJ
�

"

�
� �
���

e
�
¹

�
(!1)"

�
� �
���

(!1)�e
�
,

N(#1)"N
�

"

�
� �
���

n
�
¹

�
(1)"

�
� �
���

n
�
,

N(!1)"N
�

"

�
� �
���

n
�
¹

�
(!1)"

�
� �
���

(!1)�n
�
,

�EJ
�x �

���	

"EJ�
�

"

�
� �
���

e
�
¹ �

�
(1)"

�
� �
���

l�e
�
,

�EJ
�x �

���	

"EJ�
�

"

�
� �
���

e
�
¹�

�
(!1)"!

�
� �
���

(!1)�l�e
�
,

EA(#1)"EA
�

"

�
� �
���

d
�
¹

�
(1)"

�
� �
���

d
�
,

EA(!1)"EA
�

"

�
� �
���

d
�
¹

�
(!1)"

�
� �
���

(!1)�d
�
.

(29)

If formulae (8) and the calculated values of polynomials ¹
�
($1) and functions (29) are

used, relations for determining the displacement, angles of rotation and cross-sectional
forces at the rod's end are obtained. These relations for transverse vibration and
longitudinal vibration, respectively, are as follows:

w(#1)"w
�

"

�
� �
���

w
�
,w(!1)"w

�
"

�
� �
���

(!1)�w
�
,

�(#1)"�
�

"

�
� �
���

l�w
�
, �(!1)"�

�
"!

�
� �
���

(!1)�l�w
�
,

m(#1)"m
�

"!EJ
�

1

3

�
� �
���

l�(l�!1)w
�
,

m(!1)"m
�

"!EJ
�

1

3

�
� �
���

(!1)�l�(l�!1)w
�
,

t(#1)"t
�

"!

�
� �
���

l��
1

3
(l�!1)EJ�

�
#

1

15
(l�!1)(l�!4)EJ

�
!nN

��w� ,
t(!1)"t

�
"

�
� �
���

(!1)�l��!
1

3
(l�!1)EJ�

�
#

1

15
(l�!1) (l�!4)EJ

�
!nN

��w�

(30)
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and

u(#1)"u
�

"

�
� �
���

u
�
, u (!1)"u

�
"

�
� �
���

(!1)�u
�
,

q(#1)"q
�

"EA
�

�
� �
���

l�u
�
, q (!1)"q

�
"!EA

�

�
� �
���

(!1)�l�u
�
.

(31)

In in"nite systems of algebraic equations (24) and (25), depending on the order of di!erential
equation n to which they relate to, the "rst n equations for k"0, 1,..., n}1 is
satis"ed identity-wise. The latter equations are replaced with equations for boundary
conditions.

The in"nite systems of equations can be presented in the following matrix form:

��
App Apr

Arp Arr�!���
0 0

Brp Brr���
wp

wr�"�
Cp

Cr� , (32)

where submatrices App, Apr have dimensions, respectively, n�n and n�R (n"4 or 2) and
their elements are coe$cients relating to boundary conditions; submatrices Arp, Arr and Brp,
Brr are matrices of the coe$cients which occur in equation (24) or (25); wp"[w

�
,...,w

��	
]
,

wr"[w
�
, w

��	
,w

���
,...]
; and vectors Cp, Cr de"ne boundary conditions and coe$cients

associated with an external load.
The elements of a rigidity matrix for a "nite element

S"�
Sw 0

0 Su� , (33)

are functions of variable � and they can be determined from the following relation
[16]:

Sw"
1

a�

	

�
�	

H	w(x) ) EJ(x) ) H	Tw(x)dx#
1

a

	

�
�	

H�w(x) )N (x) ) H�Tw(x) dx

#a

	

�
�	

Hw(x) )K(x) ) HT
w(x)dx#

1

a

	

�
�	

H�w(x) )C(x) ) H�Tw(x) dx

!a��

	

�
�	

Hw(x) ) �(x) ) HT
w(x)dx!

	

�
�	

H�w(x) ) S(x) ) HT
w(x) dx

, (34)

Su"
1

a

	

�
�	

H�u(x) ) EA(x) ) H�Tu (x)dx#a
	

�
�	

Hu(x) ) F(x) ) HT
u (x) dx

!a��

	

�
�	

Hu(x) ) �(x) ) HT
u (x) dx ,

(35)
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where matrices Hw(x), Hu(x) de"ne relationships between displacements=(x) and ;(x) in
the element and co-ordinates q

	
, q

�
,...,q

�
describing the displacements and rotations at the

rod ends. The relationships are as follows:

=(x)"HT
w(x) ) qw"[H

	
(x) H

�
(x) H

�
(x) H

�
(x)] �

q
	
q
�
q
�
q
�
� , (36)

;(x)"HT
u (x) ) qu"[H

�
(x) H

�
(x)] �

q
�
q
�
� . (37)

FunctionsH
	
(x), i"1,2,...,6 in formulae (36) and (37) are called shape functions. Functions

H
	
, H

�
, H

�
, H

�
can be determined by solving an in"nite system of equations (24) in which

the "rst four equations are as follows:

�(!1))"!

�
� �
���

(!1)�l�w
�
"q

	
, �(#1)"

�
� �
���

l�w
�
"q

�
,

w(!1)"
�
� �
���

(!1)�w
�
"q

�
/a, w(#1)"

�
� �
���

w
�
"q

�
/a ,

(38)

which ful"l the following boundary conditions:

!for H
	
: q

	
"�(!1)"1, q

�
"�(1)"0, q

�
"aw(!1)"0, q

�
"aw(1)"0,

!for H
�
: q

	
"�(!1)"0, q

�
"�(1)"1, q

�
"aw(!1)"0, q

�
"aw(1)"0,

!for H
�
: q

	
"�(!1)"0, q

�
"�(1)"0, q

�
"aw(!1)"1, q

�
"aw(1)"0,

!for H
�
: q

	
"�(!1)"0, q

�
"�(1)"0, q

�
"aw(!1)"0, q

�
"aw(1)"1.

(39)

As a result, four coe$cient series W�
�
, k"1, 2, 3, 4; l"0, 1, 2, ... de"ning the sought exact

shape functions are obtained:

H
�
(x)"a

�
� �
���

W�
�
¹

�
(x), k"1, 2;

H
�
(x)"aL

�
� �
���

W�
�
¹

�
(x), k"3, 4;

(40)

where aL denotes a non-dimensional part of reference value a (e.g., if a"2)5 m, then aL "2)5).
Similarly one can determineH

�
, H

�
. In this case, the system of equations (25) are solved

in which the "rst two equations are as follows:

u (!1)"
�
� �
���

(!1)�u
�
"q

�
/a, u(#1)"

�
� �
���

u
�
"q

�
/a, (41)

and the boundary conditions are given by the formula

for H
�
: q

�
"au(!1)"1, q

�
"au(1)"0,

for H
�
: q

�
"au(!1)"0, q

�
"au(1)"1.

(42)
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If there are two solutions of system (25): Uk
l , k"5, 6; l"0, 1, 2, . . . then

H
�
(x)"aL

�
� �
���

U�
�
¹

�
(x), k"5, 6. (43)

A dynamic rigidity matrix for a "nite element can also be determined by directly
calculating the values of forces Q

	
, Q

�
, . . . ,Q

�
. The forces can be determined from formulae

(30)5}8

Q
	
"

EJ
�
a
m (!1)"!

1

3

EJ
�
a
EJ

�

�
� �
���

(!1)�l�(l�!1)w
�
,

Q
�
"!

EJ
�
a
m(#1)"

1

3

EJ
�
a
EJ

�

�
� �
���

l�(l�!1)w
�
,

Q
�
"!

EJ
�
a�
t(!1)"!

EJ
�
a�

�
� �

���

(!1)�l��!
1

3
(l�!1)EJ�

�
#

1

15
(l�!1)(l�!4)EJ

�
!nN

��w�

Q
�
"

EJ
�
a�
t(#1)"!

EJ
�
a�

�
� �
���

l��
1

3
(l�!1)EJ�

�
#

1

15
(l�!1) (l�!4)EJ

�
!nN

��w�
(44)

and (31)3}4

Q
�
"!EA

�
q (!1)"EA

�
EA

�

�
� �
���

(!1)�l�u
�
,

Q
�
"EA

�
q (#1)"EA

�
EA

�

�
� �
���

l�u
�
.

(45)

If shape function expansion coe$cients H
	
, H

�
, H

�
, H

�
and H

�
, H

�
� i.e., coe$cients

W�
�
, k"1, 2, 3, 4; l"0, 1, 2, . . . and Uk

l , k"5, 6; l"0, 1, 2, . . . , are put in formulae (44) and
(45), the following dynamic rigidity matrix elements are obtained:

S

	�

"!

1

3

EJ
�
a
EJ

�

�
� �
���

(!1)� l�(l�!1)W�
�
,

S

��

"

1

3

EJ
�
a
EJ

�

�
� �
���

l�(l�!1)W�
�
,

S

��

"!

EJ
�
a�

�
� �
���

(!1)� l��!
1

3
(l�!1)EJ�

�
#

1

15
(l�!1) (l�!4)EJ

�
!nN

��W�
�
,

S

��

"!

EJ
�
a�

�
� �
���

l��
1

3
(l�!1)EJ�

�
#

1

15
(l�!1) (l�!4)EJ

�
!nN

��W�
�
,

k"1, 2, 3, 4,

(46)

S�
��

"EA
�
EA

�

�
� �
���

(!1)� l�U�
�
,

S�
��

"EA
�
EA

�

�
� �
���

l�U�
�
, k"5, 6 .

(47)
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If there is a non-potential, axial, concentrated load P
�
, P

�
acting on the rod end, one should

modify elements S

�	

, S

��

which then assume the following form:

S

�	

"!

EJ
�
a�

�
� �
���

(!1)� l��!
1

3
(l�!1)EJ�

�
#

1

15
(l�!1) (l�!4)EJ

�
!nN

��W�
�
!�P

�
,

S�
��

"!

EJ
�

a�
�
� �
���

l��
1

3
(l�!1)EJ�

�
#

1

15
(l�!1) (l�!4)EJ

�
!nN

�� W�
�
!�P

�
.

(48)

Obviously, forces P
�
, P

�
also in#uence the values of axial forces N

�
, N

�
.

The vectors of nodal active forces can be determined from the relation

Fw"P
�

	

�
�	

p (x) Hw(x) dx, Fu"P
�

	

�
�	

r(x) Hu(x) dx . (49)

After the expansions of functions p(x), r (x) and the shape function expansions are put in
formula (49) and relation (22) is applied, this gives

F

	
"!aP

�

�
��
���

	

�
�	

�
�
��
���

p
�
(W	

�� �
#W 	

���
)� ¹

�
(x), i"1, 2;

F

	
"!aL P

�

�
��
���

	

�
�	

�
�
��
���

p
�
(W	

�� �
#W 	

���
)� ¹

�
(x) , i"3, 4; (50)

F�
	
"!aL P

�

�
� �
���

	

�
�	

�
�
� �
���

r
�
(U 	

���
#U 	

���
)� ¹

�
(x), i"5, 6.

If the following relation ([15], p. 43 equation (102))

	

�
�	

¹
�
(x) dx"�

!2/(n�!1)

0

for even n,

for odd n
(51)

is applied, it is ultimately gives

F

	
"!aP

�

�
� �
���

�
�
� �
���

p
�
(W	

�� ��
#W	

����
)�

1

4n�!1
, i"1, 2;

F

	
"!aL P

�

�
��
���

�
�
� �
���

p
�
(W	

��� �
#W	

����
)�

1

4n�!1
, i"3, 4;

F�
	
"!aL P

�

�
��
���

�
�
��
���

r
�
(U	

��� �
#U	

����
)�

1

4n�!1
, i"5, 6 .

(52)
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Figure 3. Cantilever rod loaded with non-potential concentrated force P and uniformly distributed
non-potential load s.
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Figure 4. Clamped}simply supported rod loaded with non-potential concentrated force P and uniformly
distributed non-potential loads.
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4. NUMERICAL EXAMPLES

The above method is now applied to the analysis of the stability of rods under a
non-potential load. The examples which are presented below were taken from reference
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Figure 5. Free vibration frequency versus concentrated follower load P(** ) and distributed follower load
s ( ) ) ) ) ) ) ) for Beck column and Leipholz column.
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Figure 6. Free vibration frequency versus concentrated follower load P (**) and distributed follower load
s ( ) ) ) ) ) ) ) for cantilever with variable cross-section b(x)"h(x)"2!(x#1)�/4.
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[13]. Two static schemes will be considered: a cantilever rod (Figure 3) and
a clamped}simply supported rod (Figure 4). The rods are loaded with a concentrated
follower force or an evenly distributed tangential follower load. A dynamic stability loss
criterion (bifurcation or #atter) is applied to determine the critical values of the considered
loads. homogenous rods with variable cross-sections described by functions b (x), h(x)
(Figures 3 and 4) are analyzed. It is assumed that: rod length ¸"2a"1, Young's modulus
E"1 and rod density per unit of volume �

�
"1. Only one "nite element is used to

approximate the systems. The boundary conditions needed to solve the problem are as
follows:

(1) for the rod shown in Figure 3

�(!1)"q
	
"0, w (!1)"q

�
"0,

(2) for the rod shown in Figure 4

�(!1)"q
	
"0, w (!1)"q

�
"0, w(#1)"q

�
"0.
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Figure 7. Free vibration frequency versus concentrated follower load P (**) and distributed follower load
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cross-section b(x)"h(x)"2!(x#1)/2.
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In the "rst example (Figure 5) a Beck column and a Leipholz column, loaded with
a concentrated follower force and an evenly distributed follower load, were analyzed
[17, 18]. The solutions of the stability problem for rods with a variable cross-section
described by functions b(x)"h(x)"2!(x#1)�/4 are shown in Figures 6 and 7. The
in#uence of follower parameter � on the critical force value for a rod with cross-section
b(x)"h(x)"2!(x#1)/2 is shown in Figure 8. The determined critical force values and
the results obtained by Beck [17], Leipholz and Madan [18] and Glabisz [13] have been
compiled in Table 1. The results obtained perfectly agree with the theoretical ones [17, 18]
and the ones obtained by approximation in reference [13]. With the use of Chebyshev
polynomials, the size of the approximation base can be reduced. In all the examples
provided the displacement function was approximated with only 18 Chebyshev series terms.
If classic power polynomials are used, this number is much larger (e.g., 70 series elements
were used for approximation in reference [13]). To demonstrate as to how the "nite
elements can be applied to the analysis of more complex beam systems, the problem of



TABLE 1

Comparison of results

The system shown in Figure 5 The system shown in Figure 6

P

�

�
�

s

�

�
�

P

�

�
�

s

�

�
�

This paper 20)05095 11)015 40)05371 11)030 17)91136 8)465 34)02381 7)599
Reference
[13] 20)05095 11)016 40)0537 11)029 17)93 * 34)00 *

References
[17, 18] 20)0509

�	��
* 40)05

�	��
* * * * *

The system shown in Figure 7 The system shown in Figure 8

P

�

�
�

s

�

�
�
P

�
(�"0)5) �

�
P

�
(�"1)5) �

�

This paper 10)23158 0)0 51)50603 0)0 5)01167 4)970 12)48830 7)528
Reference
[13] 10)23 0)0 51)49 0)0 5)01 * 12)48 *

Figure 9. Fixed-joint frame under axial potential load P.

Figure 10. Movable-joint frame under potential load P.
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Figure 11. Relationship between frame free vibration (scheme in Figure 9) and axial potential force P.
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stability of frame systems under an axial potential load is solved. Schemes of the analyzed
frames are shown in Figures 9 and 10. The "rst example was taken from monograph [1] in
which the stability problem was solved by analytical methods for the "rst critical force only.
In the examples shown in Figures 9 and 10, 25 Chebyshev series terms were used to
approximate the non-prismatic columns. The results are presented in Figures 11 and 12 and
in Tables 2 and 3. For comparison, the results obtained by applying classical "nite elements
are given in the Table. In the latter case, the system was divided into 12 "nite elements (the
columns * 4 elements, the spandrel beams * 3 elements). The computations were made
using the COSMOS software. As in the previous test tasks, the results were in very good
agreement with those obtained by other methods.

5. CONCLUSION

The results obtained prove that the proposed method is e!ective and therefore useful for
determining a dynamic rigidity matrix for non-prismatic rod "nite elements. If the exact
shape functions yielded by the algorithm presented are applied to the approximation in the



TABLE 2

Comparison of results

The system shown in Figure 9 The system shown in Figure 10

This paper Classical FEM This paper Classical FEM This paper Classical FEM This paper Classical FEM

P(N) �
	
(rad/s) �

	
(rad/s) �

�
(rad/s) �

�
(rad/s) P(N) �

	
(rad/s) �

	
(rad/s) �

�
(rad/s) �

�
(rad/s)

0 63)96 61)86 66)80 64)38 0 4)77 4)70 64)08 61)98
250 000 61)24 59)10 64)01 61)57 50 000 4)56 4)48 * 61)44
500 000 58)34 56)14 61)05 58)56 100 000 4)33 4)25 * 60)90
750 000 55)21 52)95 57)87 55)32 150 000 4)10 4)01 * 60)34

1 000 000 51)83 49)47 54)43 51)81 200 000 3)84 3)75 * 59)78
1 250 000 48)11 45)63 50)89 47)95 250 000 3)57 3)47 61)36 59)22
1 500 000 43)97 41)32 46)53 43)64 300 000 3)28 3)17 * 58)64
1 750 000 39)26 36)35 41)85 38)72 350 000 2)95 2)82 * 58)06
2 000 000 33)73 30)38 36)41 32)89 400 000 2)57 2)43 * 57)47
2 250 000 26)83 22)60 29)78 25)52 450 000 2)13 1)96 * 56)87
2 500 000 16)94 9)15 20)81 14)35 500 000 1)57 1)31 58)46 56)27
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TABLE 3

Comparison of results

The system shown in Figure 9 The system shown in Figure 10

P
	� 
�

(N) P
�� 
�

(N) P
	� 
�

(N) P
��
�

(N)

This paper 2 660 589 2 730 629 558 500 2 666 634
Classical FEM 2 547 908 2 612 683 540 865 2 553 525
Reference [1] 2 618 000 * * *
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elements, the size of the problems can be reduced considerably. The numerical examples
provided show that even if only one element is used, an exact solution of the stability
problem can be obtained. The #atter values and critical bifurcation loads determined by this
method are in perfect agreement with those obtained by other authors. Although a simple
element shape was used in the examples, the proposed method can be applied to systems
made up of rod elements with complex geometry and any distribution of mass and strength
parameters, resting on a two-parameter non-homogenous elastic foundation. The simple
way of determining the sought coe$cients, consisting of the solution of an in"nite system of
algebraic equations in which the system parameters are described by closed analytical
formulas, enables the direct solution of such complex cases.
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